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Speed of adaptation in structured populations
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Abstract. Adaptation of populations takes place with the occurrence and subsequent fixation of muta-
tions that confer some selective advantage to the individuals which acquire it. For this reason, the study
of the process of fixation of advantageous mutations has a long history in the population genetics liter-
ature. Particularly, the previous investigations aimed to find out the main evolutionary forces affecting
the strength of natural selection in the populations. In the current work, we investigate the dynamics of
fixation of beneficial mutations in a subdivided population. The subpopulations (demes) can exchange mi-
grants among their neighbors, in a migration network which is assumed to have either a random graph or a
scale-free topology. We have observed that the migration rate drastically affects the dynamics of mutation
fixation, despite of the fact that the probability of fixation is invariant on the migration rate, accordingly
to Maruyama’s conjecture. In addition, we have noticed a topological dependence of the adaptive evolution
of the population when clonal interference becomes effective.

PACS. 87.23.Kg Dynamics of evolution – 87.15.Aa Theory and modeling; computer simulation

1 Introduction

Adaptation in microbe populations, in the simplest sce-
nario, consists of rare beneficial mutations which through
rapid selective sweeps reach fixation in the population [1].
These fixation events are alternated by periods of low ac-
tivity, where no beneficial mutation is fixed. Although the
occurrence of deleterious mutations are much more likely,
this simplistic view can be broken down for very large pop-
ulation sizes or high mutation rates. Upon these circum-
stances, the coexistence of distinct beneficial mutations
becomes common. In asexual populations, where genomes
carrying distinct mutations can not recombine to form a
better adapted entity, this leads to a strong competition
between distinct beneficial mutations in order to reach
fixation with the ultimate loss of the remaining ones, a
phenomenon which is known as clonal interference [2]. The
clonal interference results in longer fixation times and con-
sequently a slower adaptation rate in asexual populations.

The phenomenon of clonal interference has been exten-
sively studied for a long term in both theoretical [3–7] and
experimental frameworks [5,8–12]. Those investigations
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upgraded the understanding of the evolutionary mecha-
nisms affecting the clonal interference strength in natural
populations. Despite of the advances, those investigations
were restricted to the assumption of non-structured popu-
lations. A first attempt to tackle the problem of structured
populations was the analysis of the advantageous muta-
tions fixation dynamics in a spatially structured asexual
haploid population [13,14]. In that model, the individuals
were distributed in a two-dimensional lattice with local
competition, i.e., the organisms interacted only with their
nearest neighbors. It was shown that the beneficial muta-
tion substitution rate in a spatially structured population
is smaller than the one observed in non-structured popu-
lations. This is more pronounced as the adaptive mutation
rate increases, exactly where clonal interference becomes
more relevant [13].

However, to our knowledge, the role of network topol-
ogy and structuring on the adaptive process of subdivided
populations has not been analyzed yet, perhaps because
of the belief that population structure does not influence
the population dynamics. In fact, Maruyama has demon-
strated that under certain types of population structure,
more specifically models that assume conservative migra-
tion, the fixation probability of adaptive mutations is the
same as in an undivided population [15]. This is precisely
what we have observed in our model as long as neither
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extinction nor clonal interference are considered. There-
fore, this contribution focuses on the competition between
different clones for fixation, how it changes this scenario,
and how topology affects the competition.

To this end, we consider a structured population
model recently introduced to investigate patterns of neu-
tral genetic variation in the epidemiological context of
susceptible-infected-susceptible model (SIS) [16,17]. Here,
the model is slightly modified such that the individuals are
subjected to natural selection.

The paper is organized as follows: Section 2 describes
the model. In Section 3 we show our simulation results,
and finally in Section 4 we present our conclusions.

2 The model

Recently, Gordo and Campos introduced a structured
population model to describe pathogen diversity evolu-
tion [16,17]. In their model the population is subdivided
in several small sub-populations called demes. Each deme
can exchange migrants with their neighbor demes. We as-
sume two distinct topologies for this migration network:
random graphs [18] and scale-free networks [19]. The total
number of demes in the population is D, and each deme
can carry Nd individuals, hence, the maximum population
size is N = DNd. Each deme might be extinct with prob-
ability e at each generation. By extinction we mean that
the deme becomes empty, but the deme can be recolonized
through migration. At each generation the number of mi-
grants of a given deme is taken from a Poisson distribution
of mean Ndmkj , where m is the migration rate per link
per individual and kj is the connectivity of deme j. The
emigrants are randomly chosen among the Nd individuals
in the deme and moved to one of the kj demes.

Opposed to the original model, where neutral selection
was assumed [16], we consider natural selection. We also
assume the occurrence of both beneficial and deleterious
mutations, which occurs at rates Ub and Ud, respectively.
The net selective effect sb of a given beneficial mutations is
exponentially distributed, except when otherwise stated,
according to

P (sb) = β exp(−βsb) (1)

where 1/β is the mean selective effect of advantageous
mutations [20]. On the other hand, each deleterious mu-
tation reduces the adaptation value of the organisms by
a constant factor (1 − sd). Hence, the adaptation of an
individual with kb beneficial mutations and kd deleterious
mutations is

ω =

[
kb∏

i=1

(1 + sb(i))

]
(1 − sd)kd . (2)

The ultimate fate of any mutation is either its fixation or
its loss from the population. A fixation event occurs when
all individuals in the population have acquired that muta-
tion. The rate of fixation is then calculated by measuring
the number of fixation events in a given time window di-
vided by the size of this time interval.
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Fig. 1. Fixation probability Pfix as a function of the selective
benefit sb of the beneficial mutation. The data correspond to
results from 5000 runs. The parameters are N = 10 000, D =
200, Ud = 0, e = 0, and m = 0.0001 (left triangles), m =
0.001 (diamonds) and m = 0.01 (circles). The filled symbols
correspond to the results for the random graph simulations,
whereas open symbols refer to scale-free topologies. In both
cases the mean connectivity of the network is z = 6. The thick
line is the theoretical prediction for a homogeneous population
according to equation (3).

3 Results

Maruyama has claimed that upon conservative migration,
i.e. the expected number of emigrants equals the num-
ber of immigrants in a deme, the probability of fixation
is not dependent on the population structure and it is
the same as in a homogeneous population [15]. In order
to test this hypothesis in our model, we have measured
the fixation probability of advantageous mutations as a
function of their benefit effect sb. Starting the population
with N − 1 individuals whose fitnesses are equal to one
and a single mutant with fitness 1+sb (here sb is fixed in-
stead of exponentially distributed), we have recorded the
fate of that beneficial mutation. At this stage, there is no
competition among beneficial mutations and the extinc-
tion rate has been settled to zero. This corresponds to the
celebrated two-allele model [23]. In Figure 1 we show the
fixation probability (the number of instances where fixa-
tion has been achieved divided by the number of samples)
as a function of sb for several migration rates and differ-
ent topologies (random graphs and scale-free networks),
but with the same mean connectivity. It is worth mention-
ing that Maruyama’s hypothesis does not consider neither
competition among advantageous mutations nor extinc-
tion of demes. In the figure we also compare our results
with that expected in a homogeneous population, which
is the solution of the following equation

Pfix = 1 − e−(1+sb)Pfix , (3)

obtained by means of the branching process formula-
tion [24] for the fixation probability in a homogeneous
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Fig. 2. Fixation probability Pfix as a function of the selective
benefit sb of the beneficial mutation. The simulation parame-
ters are the same as in Figure 1, except that e = 0.02.

population [23]. The collapse of all curves indicates that
Maruyama’s assumption is indeed valid in this case.

On the other hand, in Figure 2 we show the fixation
probability as a function of sb but now there is a non-
null extinction probability. Conversely, we now see that
there is a clear dependence on the migration rate m. We
also observe a topological dependence, especially for low
migration rates, where the fixation probability in a scale-
free network is slightly greater than in a random graph. We
also observe that the fixation probability increases with
the migration rate. What is more, for very small migration
rate, the beneficial mutation will disappear before it can
migrate, thence there will be no fixation at all.

In Figure 3 we investigate the joint effect of deleteri-
ous and beneficial mutations on the fixation probability
of the latter ones. The parameters are the same as in Fig-
ure 1, except that now Ud = 0.1 and sd = 0.1. In spite of
conservative migration, since e = 0, we see that now the
probability of fixation is dependent on the migration rate,
opposed to the case Ud = 0. More specifically, we find that
a smaller migration rate leads to a smaller probability of
fixation. We argue that this behavior is a consequence of
the dependence of the time a mutation takes to fix on
the migration rate. Although the fixation probability of
a single beneficial mutation is the same for all values of
migration rate, as shown in Figure 1, its fixation time
is noticeably dependent on m. For large m the mutation
can rapidly spread all over the deme network, whereas
for small m the process of diffusion over the population
is very slow. However, long fixation times allows the ap-
pearance of more segregating deleterious mutations, which
reduces adaptation, and consequently the chance of fixa-
tion is greatly affected. As expected, we also observe that
the probability of fixation decreases with the augment of
Ud [6,21,22] (results not shown) and that Ud enhances the
topological effects.

None of these previous simulations conceive compe-
tition among distinct advantageous mutations. Conse-
quently it is not possible to appreciate how other evo-
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Fig. 3. The effect of deleterious mutations on the fixation
probability Pfix . The simulation parameters are N = 10 000,
D = 200, Ud = 0.1, sd = 0.1, e = 0, and m = 0.001 (diamonds)
and m = 0.01 (circles). The filled symbols denote the random
graph topology, whereas empty symbols represent scale-free
networks.

lutionary factors such as clonal interference can affect the
evolutionary dynamics. From now on, we will assume that
beneficial mutations take place at a constant rate Ub. We
will start the simulations by assuming a population of in-
dividuals which are mutation-free. We then let the popu-
lation evolve until Nev = 20 fixation events have occurred
and estimate the number of generations that it takes. The
process is repeated Nruns times in order to get a reason-
able statistical confidence on our simulation results. We
have ascertained that Nruns = 50 provides a good statis-
tics for the data. In Figure 4 we plot the beneficial mu-
tation fixation rate Rb as a function of the rate of ad-
vantageous mutations, Ub, for some values of m and for
the two topologies under consideration, random graphs
and scale-free networks. In this figure e = 0 and so there
is no clearance of the demes (extinction). As expected,
we clearly notice that the fixation rate increases with the
augment of Ub, and Rb is strongly dependent on the mi-
gration rate m. A smaller migration rate means effectively
a smaller fixation rate Rb. Again, this is closely related to
the dependence of the time a beneficial mutation takes
for fixation with the migration rate. We also notice that
the rate of growth of Rb decreases as a smaller migration
rate is considered. From the figure, a dependence of Rb

on the topology of the interaction network is observed,
Rb being larger for scale-free than for random graphs net-
works. However, the differences between the two topolo-
gies is only pronounced in the regime of large Ub. In this
regime, a large supply of beneficial mutations results in
a strong competition among the distinct mutations, and
so the occurrence of clonal interference. Consequently, the
fixation of a given mutation means the ultimate loss of all
its competitors.

Together with the simulation results, we also show the
expected fixation rate in a infinitely large homogeneous
population disregarding the clonal interference, which is
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Fig. 4. Fixation rate of beneficial mutations as a function of
the mutation rate Ub. The parameters used in the simulation
are N = 10 000, D = 200, Ud = 0, e = 0, β = 20, z = 4,
and m = 0.0001 (left triangles), m = 0.001 (diamonds) and
m = 0.01 (circles). The filled data points corresponds to the
simulation results for random graph networks, whereas empty
data points refer to scale-free topologies. The thick line is the
expected rate for a homogeneous population without clonal
interference given by equation (4).

given by (see Ref. [4])

kb = NUbPfix (β), (4)

where NUb is the number of beneficial mutations per gen-
eration and Pfix (β) is the fixation probability of a given
beneficial mutation whose selective effect is exponentially
distributed1. For small Ub, where clonal interference is not
so strong, the fixation rate for a homogeneous population
is not very distinct from our simulation results for struc-
tured populations. However, as Ub increases and competi-
tion among beneficial mutations becomes common, equa-
tion (4) clearly overestimates the simulation results.

In Figure 5 we show the fixation rate Rb as a func-
tion of the mutation rate Ub for Ud = 0 and a non-null
extinction rate, e = 0.02. Therefore, for this specific value
of the extinction rate, at each t = 50 generations, in aver-
age, each deme goes through an extinction process, which
means that the deme becomes empty. In subsequent gener-
ations the extincted deme can be recolonized by migrants
from neighbor demes. We observe the same qualitative
scenario as in Figure 4. As in the previous case (without
extinction), the difference between the rates for random
graphs and scale-free networks is clearly observed in the
clonal interference regime. Nevertheless, when extinction
is at work, the fixation rate decreases.

For the sake of completeness, in Figure 6 we plot the
fixation rate for fixed migration rate m and distinct values

1 We have estimated the probability of fixation Pfix (β) by
means of equation (3), and because the selective effects of fa-
vorable mutations are exponentially distributed, we have nu-
merically integrated the solution provided in the previous step
over all possible values of selective effects.

10
-6

10
-5

10
-4

10
-3

U
b

0

0.004

0.008

0.012

R
b

Fig. 5. Fixation rate of beneficial mutations as a function of
the mutation rate Ub. The simulation parameters are the same
as in Figure 4, except that e = 0.02.
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Fig. 6. The effect of deleterious mutations on the fixation
rate of advantageous mutations. The parameters used in the
simulations are N = 10 000, D = 200, m = 0.001, sd = 0.1,
e = 0, β = 20, z = 4, and U = 0.01 (circles), U = 0.05
(diamonds) and U = 0.1 (left triangles). The filled data points
corresponds to random graph simulations, whereas empty data
points refer to scale-free topologies.

of deleterious mutations rate Ud. As expected, the rate Rb

decreases as we increase the mutation rate Ud, because of a
smaller fixation probability. Besides, the same qualitative
scenario is seen and once more scale-free networks display
a higher performance than random graphs for the rate of
substitution of the advantageous mutations.

3.1 Dynamics of non-fixed mutations

Recently, Rosas et al. [25] have investigated the dynam-
ics of favorable mutations loss in an asexual population.
They have focused their study on the analysis of the prob-
ability distribution, P (s), of the maximum population size
achieved by mutations before they reach extinction due to
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Fig. 7. Probability distribution of maximum population sizes
reached by mutations that have subsequently been lost. The
parameters are N = 10 000, D = 200, z = 4, m = 0.0001 and
e = 0. The vertical lines indicate multiples of the deme size (50
in this case).

genetic drift or to clonal interference. Interestingly, they
showed that two distinct scaling emerge from the analysis
of P (s): one for small s, where genetic drift is the main
evolutionary force and clonal interference has a subtler
role, and another for large population size s, where clonal
interference prevails over the genetic drift. This analysis is
particularly elucidating because it allows the quantitative
determination of the regions where clonal interference and
genetic drift are dominant without any a priori assump-
tion.

Here we have also analyzed the probability distribu-
tion P (s) in order to get some insight about the dynamics
of the beneficial mutations fixation in a structured pop-
ulation. Figure 7 shows P (s) for a structured population
composed of N = 10 000 individuals which are subdivided
in D = 200 demes. Opposed to what was observed in a ho-
mogeneous and in spatially distributed populations [25],
the distribution P (s) is characterized by the occurrence
of several peaks distributed over an almost straight line
in a log-log plot. We also check that these peaks manifest
around integer multiples of the deme size Nd = 50.

In Figure 8 we have increased the deme size to Nd =
100 and we see once again that the peaks in the distri-
bution takes place at multiples of the deme size. Never-
theless, in Figure 8 we also observe that an augment of
the migration rate m reduces the amplitude of the peaks,
and for very large m the peaks are no longer noticeable.
Since the time that a given individual takes to move from
the original deme to one of the neighbors demes is pro-
portional to 1/m, at low migration rates this time is too
long compared to the time a given advantageous mutation
spends to reach fixation in a deme. Therefore, a given ben-
eficial mutation can escape drift and reach fixation in the
deme it has been originated or it simply becomes lost in
the earlier stages of its appearance. If the beneficial muta-
tion has been successful, it can move to another neighbor
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Fig. 8. Probability distribution of maximum population sizes
reached by mutations that have subsequently been lost. The
parameters are N = 20 000, D = 200, z = 4, e = 0 and
m = 0.01 (solid line), m = 0.001 (dashed-line) and m = 0.0001
(short-dashed line).

deme and now has to compete for fixation in this sec-
ond deme. Naturally, its survival probability in the second
deme depends on the genetic background of that deme. In
a well-established population with larger beneficial muta-
tion, its fixation will be rather unlikely. In addition, the
population of the original deme can be invaded and out-
competed by more adapted mutants from neighbor demes
leading to its elimination from the population. Altogether,
those two effects explain the existence of the first peak. On
the other hand, when the second deme population genetic
background is weaker than the one of the first deme, the
selective advantage of the first deme population may lead
to the domination of the second deme. This reasoning can
be pursued to explain the other peaks as well as the ben-
eficial mutation spread over the whole population and its
ultimate fixation.

For high migration rates, the time that a given muta-
tion takes to move from one deme to another is very short,
which means that as soon as an advantageous mutation
arises and it starts to grow in size, a rapid spreading of
the mutation over the whole network and the process of
fixation is faster. Consequently, the peaks in P (s) disap-
pear.

4 Conclusions

We have studied the evolutionary dynamics in a struc-
tured population model introduced by Campos and
Gordo [16], where the population is subdivided in sev-
eral small subpopulations that exchange individuals by
migration. Differently of the original model, here we have
assumed that the individuals are subjected to the influ-
ence of natural selection. We have considered two distinct
topologies for the migration network: random graphs and
scale-free networks. As expected from Maruyama’s claim,
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the fixation probability of a given beneficial mutation is
not influenced by neither the rate at which individuals
move from one deme to the other nor by the topology of
the network in the absence of deleterious mutations and
extinction. The same is not true when extinction occurs,
since extinction creates an asymmetry in the probability
of emigration and immigration. Similarly, when deleteri-
ous mutations are taken into account we find a strong
dependence on the migration rate even for null extinction
rate. What is more, in the presence of extinction or dele-
terious mutations the probability of fixation depends on
the topology.

By letting the population evolve in a given time win-
dow we were able to measure the fixation rate of beneficial
mutations for a given mutation rate Ub. As usual, the rate
Rb is an increasing function of the mutation rate Ub. We
have seen that Rb is fairly dependent on the migration
rate, with a greater migration resulting in an acceleration
of the adaptive process. In spite of the independence of the
fixation probability of a given mutation on the migration
rate, the time it takes to spread over the whole popu-
lation is proportional to 1/m. This essential part of the
dynamics is captured when we measure the rate of sub-
stitutions, even when the extinction rate is null. Nicely,
we have also observed that the topology of the network
affects the evolutionary dynamics of the population in the
regime of large mutation rates Ub, which is exactly the
regime where clonal interference becomes more effective.
More specifically, the scale-free topology presents a faster
adaptation speed than random graphs. This result is par-
ticularly important because it demonstrates that pathogen
population dynamics should also be taken into account in
the studies of the interchange of network topologies and
disease dynamics [26–29].

Finally, the analysis of the distribution of benefi-
cial mutations extincted before fixation shed light over
the dynamics of advantageous mutations diffusion. For
low migration rates (slow diffusion) the distribution P (s)
presents peaks on multiples of deme size, while for large
migration rates (fast diffusion) the evolution of the system
is more uniform and the peaks disappear.
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